Publications
Journals
Ascolani, F., Damato, S. and Ruggiero, M. (2024) An R package for nonparametric inference on dynamic populations with infinitely many types Journal of Computational Biology, forthcoming (pdf).
Ascolani, F. and Zanella, G. (2024) Dimension-free mixing times of Gibbs samplers for Bayesian hierarchical models. Annals of Statistics, 52(3), 869-894 (pdf).
Ascolani, F., Franzolini, B., Lijoi, A. and Prünster, I. (2024) Nonparametric priors with full-range borrowing of information. Biometrika, 111(3), 945–969 (pdf).
Ascolani, F., Lijoi, A., Rebaudo, G. and Zanella, G. (2023) Clustering consistency with Dirichlet process mixtures. Biometrika, 110(2), 551-558 (pdf).
Ascolani, F., Lijoi, A. and Ruggiero, M. (2023) Smoothing distributions for conditional Fleming-Viot and Dawson-Watanabe diffusions. Bernoulli, 29(2), 1410-1434 (pdf).
Ascolani, F., Lijoi, A. and Ruggiero, M. (2021) Predictive inference with Fleming-Viot driven dependent Dirichlet processes. Bayesian Analysis, 16(2), 371-395 (pdf).
Submitted
Ascolani, F., Lavenant, H. and Zanella, G. (2024+) Entropy contraction of the Gibbs sampler under log-concavity. Submitted (pdf).
Ascolani, F., Roberts, G. O. and Zanella, G. (2024+) Scalability of Metropolis-within-Gibbs schemes for high-dimensional Bayesian models. Submitted (pdf).
Ongoing Projects
- Ascolani, F., Lijoi, A. and Prünster, I. (2024+) Trees of random probability measures and Bayesian nonparametric modelling. Working Paper.
Discussions and Conference Proceedings
Ascolani, F., Lijoi, A., Prünster, I. (2024). Discussion of Root and community inference on the latent growth process of a network by Crane, H. and Xu, M. J. R. Stat. Soc. Series B, 85 (5), 1357-1391.
Ascolani, F., Lijoi, A., Prünster, I. (2023). Discussion of Martingale Posterior Distribution by Fong, E., Holmes, C and Walker, S. G. J. R. Stat. Soc. Series B, 85 (5), 1357-1391.
Ascolani, F., Catalano, M., Prünster, I. (2022). Discussion of Evaluating sensitivity to the stick-breaking prior in Bayesian nonparametrics by Giordano, R., Liu, R., Jordan, M. I., and Broderick, T. Bayesian Anal., 1 (1), 1-34 (pdf).
Ascolani, F. and Ghidini, V. (2023) Posterior clustering for Dirichlet Process Mixtures of Gaussians with constant data. Book of Short Papers CLADAG 2023, Pearson (pdf).
Ascolani, F. and Ghidini, V. (2023) Linear models with assumptions-free residuals: a Bayesian Nonparametric approach Book of short papers SEAS IN 2023, Pearson (pdf).
Ascolani, F. (2022) Mixing Times of a Gibbs Sampler for Probit Hierarchical Models. International Conference on Bayesian Statistics in Action, Springer (pdf).
Ascolani, F., Franzolini, B., Lijoi, A. and Prünster, I. (2021) On the dependence structure in Bayesian nonparametric priors. Book of Short Papers of the Italian Statistical Society, Pearson (pdf).
Ascolani, F., Lijoi, A. Ruggiero, M. and Prünster, I. (2021) A framework for filtering in hidden Markov models with normalized random measures. Book of Short Papers of the Italian Statistical Society, Pearson (pdf).